On the small ball inequality in three dimensions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Small Ball Inequality in All Dimensions

The point of interest is the dependence upon the logarithm of the volume of the rectangles. With n(d−1)/2 on the left above, the inequality is trivial, while it is conjectured that the inequality holdswith n(d−2)/2. This is known in the case of d = 2 (Talagrand, 1994), and a recent paper of two of the authors (Bilyk and Lacey, 2006) proves a partial result towards the conjecture in three dimens...

متن کامل

On the Signed Small Ball Inequality

where the implied constant is independent of n ≥ 1. The inequality above (without restriction on the coefficients) arises in connection to several areas, such as Probabilities, Approximation, and Discrepancy. With η(d) = (d − 1)/2, the inequality above follows from orthogonality, while it is conjectured that the inequality holds with η(d) = d/2. This is known and proved in (Talagrand, 1994) in ...

متن کامل

Small Weak Epsilon-Nets in Three Dimensions

We study the problem of finding small weak ε-nets in three dimensions and provide new upper and lower bounds on the value of ε for which a weak ε-net of a given small constant size exists. The range spaces under consideration are the set of all convex sets and the set of all halfspaces in R3.

متن کامل

the impact of e-readiness on ec success in public sector in iran the impact of e-readiness on ec success in public sector in iran

acknowledge the importance of e-commerce to their countries and to survival of their businesses and in creating and encouraging an atmosphere for the wide adoption and success of e-commerce in the long term. the investment for implementing e-commerce in the public sector is one of the areas which is focused in government‘s action plan for cross-disciplinary it development and e-readiness in go...

ON HUBERT ' S INEQUALITY IN n DIMENSIONS

The question of obtaining more precise information about the term o(l) in (3) seems to have been first publicly raised by W. W. Sawyer [ l ] . Because of the interest of this problem in numerical analysis [2] it has been investigated by several workers [3; 4; 5] with the result that various upper and lower bounds for the rate of growth of this term are known. We have been able to determine the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Duke Mathematical Journal

سال: 2008

ISSN: 0012-7094

DOI: 10.1215/00127094-2008-016